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Abstract

It has previously been shown that in dry air 5-hydroxy-2-pentanone cyclizes and dehydrates to form 4,5-dihydro-2-methylfuran. A series
Cs—Cs 1,4-hydroxycarbonyls were generated in situ from the OH radical-initiated reactions ofithiane precursors, and their dark decays
in air investigated as a function of water vapor concentration. To remove any reactive dihydrofurans formed, in some experingenisided
after 120-240 min and the 1,4-hydroxycarbonyls monitored for a further time period. In general, at low water vapor concentrations the 1
hydroxycarbonyl decayed in the dark in the absence of addedi@ the concentration reaching a plateau indicating that an equilibrium between
the 1,4-hydroxycarbonyl and the dihydrofuran had been attained. Additiogleti@o further decay of the hydroxycarbonyl. At higher water vapor
concentrations, no significant decay of the 1,4-hydroxcarbonyl was observed in the absence ogaddieatidition of Q resulted in a measurable
decay of the 1,4-hydroxycarbonyl. Finally, at yet higher water vapor concentrations, no decay of the 1,4-hydroxycarbonyl was observed in
absence or presence of.G\t >50% relative humidity at 296 K, thes€Cg 1,4-hydroxycarbonyls examined here were stable against cyclization
and dehydration.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction of (1.640.4) x 10~ cm? molecule 1 s~1 [9]. More recently,
Baker etal[10] generated a series 0§ECg 1,4-hydroxyketones
Alkanes are important constituents of gasoline and vehiclen situ from theim-alkane precursors and obtained rate constants
exhaus{1] and account for-50% of the non-methane volatile for their reactions with the OH radical.
organic compounds observed in ambient air in urban d&as In reaction chambers in dry air op\6-hydroxy-2-pentanone
In the atmosphere, alkanes react primarily with OH radif3ls  cyclizes to form the hemi-acetal which then loses water to form
leading in the presence of NO to the formation of alkyl nitrates 4, 5-dihydro-2-methylfurafi1,12], as shown irscheme 1Con-
carbonyls, 1,4-hydroxyalkyl nitrates, and 1,4-hydroxycarbonylssequently, both Reisen et 48] and Baker et al[10] carried
[4-8], with the formation of 1,4-hydroxycarbonyls accounting out their studies at-50% relative humidity to avoid losses of
for >50% of the products from theCe n-alkaneq7,8]. Reisen  the 1,4-hydroxycarbonyls due to cyclization and dehydration.
et al. [8] identified and quantified each of the predicted 1,4-4 5-Dihydro-2-methylfuran, the cyclized dehydration product
hydroxycarbonyls formed from the OH radical-initiated reac-of 5-hydroxy-2-pentanone, is highly reactive towards OH and
tions of n-pentane through-octane. 5-Hydroxy-2-pentanone NOj radicals and @ [12], with measured rate constants (in
is the only commercially available 1,4-hydroxycarbonyl, and itunits of cn? molecules1) of 2.2x 10719, 1.7x 1071 and
reacts with OH radicals with a room temperature rate constarg.5 x 1015, respectivelyj12].
Because of the high reactivity of the dihydrofurans, it
is important to understand the conditions under which 1,4-
«+ Corresponding author, Tel.- +1 951 827 3502. hydroxycarbonyls will cyclize and dehydrate. Therefore, in this

E-mail addresses: ratkins@mail.ucr.edu (R. Atkinson), janet.arey@ucr.edu Wor_k we have generated aseries g-Cg 1,4-h_ydr0xycarbonyl_s
(3. Arey). in situ from their-alkane precursofd 0] and investigated their
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tions were purposefully kept relatively low in order to avoid
R1C(O)CH2CH2CH(OH)R: ™ HOQR the formation of high concentrations of HCHO (from photol-
Ri 0 2 ysis of methyl nitrite), which would be derivatized and it was
thought might lead to depletion of the derivatizing agent. In
-H0 H each experiment, a single irradiation to generate in situ the
1,4-hydroxycarbonyls was carried out for 10-20 min at 20%
/@\ of the maximum light intensity. 3-Pentanone, at a concentra-
R R» tion of ~2.4x 102 molecule cm3, was added to the chamber
0 after the irradiation as an internal standard to check on the
04 analyses of the 1,4-hydroxycarbonyl products. In addition to
i in situ generation of 1,4-hydroxycarbonyls, a series of experi-

ments were carried out in which 12102 molecule cn® of

5-hydroxy-2-pentanone and2.4x 102 molecule cnm? of 3-
Scheme 1. pentanone (the latter as an internal standard) were introduced

into the chamber. The purified air used as the diluent gas con-

dark decays in air as a function of water vapor concentrationtained~3 x 10 molecule cn2 of water vapor, and bD was

1,4-Hydroxycarbonyls do not elute from gas chromatographiadded to those experiments conducted at higher water vapor con-

columns without prior derivatizatiof#,7,8] and solid phase centrations. One experiment with 5-hydroxy-2-pentanone was

microextraction (SPME) fibers pre-coated with(2,3,4,5,6- conducted using cylinder Nas the diluent gas (by twice emp-

pentafluorobenzyl)hydroxylamine (PFBHA) were utilized to tying the collapsible chamber and filling with cylindep)N

allow in situ on-fiber derivatization of the 1,4-hydroxycarbonyls  After the irradiation of CHONO-NO-x-alkane—air mix-

for analysis as their oxime derivatives by gas chromatographjures and addition of 3-pentanone internal standard, or intro-

PRODUCTS

with flame ionization detection (GC—FI}$-10] duction of 5-hydroxy-2-pentanone plus 3-pentanone, the 1,4-
hydroxycarbonyls were monitored in the dark for a period of
2. Experimental methods up to 111-340min. In several experiments, after this initial

period of monitoring, @ (corresponding to a concentration of

Experiments were carried out in~a7000 . Teflon chamber ~(0.6-3.0)x 10" molecule cnt® in the chamber and sufficient
at 296+ 4K and 735 Torr total pressure of purified air con- to ensure that the remaining NO present was reacted away and
taining various water vapor concentrations up to 3B’  that Q; was present in the chamber) was added to the chamber
molecule cm® (corresponding to 51% relative humidity at to react with any dihydrofurans present and hence facilitate con-
296 K). The chamber is equipped with a Teflon-coated fan toersion of 1,4-hydroxycarbonyls to dihydrofurar@&heme L
ensure rapid mixing of the reactants during their introductionThe 1,4-hydroxycarbonyl concentrations were monitored for
into the chamber, and has two parallel banks of blacklampan additional 12—-163 min (and in all but two cases for up to
for irradiation. Hydroxyl (OH) radicals were generated by the70-163 min) after addition of £to the chamber.
photolysis of methyl nitrite (CEHONO) in air at wavelengths The 1,4-hydroxycarbonyls were identified and monitored
>300 nm[8,10], and NO was added to the reactant mixtures tousing on-fiber derivatization with SPMB-10,13] A 65um
suppress the formation of{@&nd hence of N@radicals. polydimethylsiloxane/divinylbenzene PDMS/DVB fiber was

The 1,4-hydroxycarbonyls, 5-hydroxy-2-pentanone and 4€oated with PFBHA[8-10,13] involving headspace extrac-
hydroxypentanal from the-pentane reaction; 5-hydroxy-2- tion from 2ml of an aqueous solution~(70 mg of PFBHA
hexanone, 6-hydroxy-3-hexanone and 4-hydroxyhexanal frorhydrochloride per 100 ml of water) in a 20 ml vial over a 30 min
the n-hexane reaction; 5-hydroxy-2-heptanone, 6-hydroxy-period with rapid agitation using a magnetic stirrer. The PFBHA
3-heptanone, 1-hydroxy-4-heptanone and 4-hydroxyheptanabating of the fiber was carried out under nitrogen gas to mini-
from the n-heptane reaction; and 5-hydroxy-2-octanone, 6-mize any acetone contamination from laboratory air. The coated
hydroxy-3-octanone, 7-hydroxy-4-octanone and 4-hydroxydfiber was then exposed to the reactants in the chamber for 5 min
octanal from ther-octane reactiofi8] were generated in situ to form a PFBHA-carbonyl oximgl3]. For GC-FID analyses,
from the OH radical-initiated reactions efpentane through-  the exposed fiber was then removed from the chamber and ther-
octane[8,10]. 5-Hydroxy-2-pentanone, which is commercially mally desorbed for 2 min (injection port temperature at 259
available, was also introduced into the chamber in separatento a 30 m DB-1, 0.32 mm i.d., capillary columny phase
experiments and its behavior investigated. thickness) held at 40C and then temperature programmed at

For in situ formation of the 1,4-hydroxycarbonyls from the 20°C min—!to 160°C, then at 2C min—1 to 240°C, and then at
irradiation of CHONO-NO-#-alkane—air mixtures, the initial 20°C min—1 to 300°C. GC-MS analyses of exposed fibers were
reactant concentrations (in molecule ciiiwere: CHONO and  carried out in a similar manner, using a Varian 2000 GC/MS/MS
NO, ~2.4x 103 molecule cn® eachy-pentane~2.4x 10'%,  with isobutane chemical ionization.
n-hexane,~2.2 x 1013, n-heptane,~1.7 x 10'3, or n-octane, The water vapor concentration was measured at the end of
~2.4x 1013, with one experiment withn-octane hav- each experiment by drawing chamber air over a thermometer
ing initial CH3ONO, NO andn-octane concentrations of and measuring the dry and wet bulb temperatures to obtain
~1.2x 10" molecule cm® each. The CHONO concentra- the temperature and relative humidity of the chamber diluent
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air, which was then converted to water vapor concentrationsiith the ratio of the two isomer peaks being constant and char-
[14]. The uncertainty in the water concentration measurementacteristic for a particular 1,4-hydroxycarbonyl. For each of the
is estimated to be-2 x 109 molecule cr® (i.e.,£3% relative  1,4-hydroxycarbonyls, one or both of the GC peaks of the oximes
humidity at 296 K). @ concentrations were measured by ultra-was used to monitor their concentration during the experiments,
violet absorption using a Dasibi AH-1003 ozone analyzer. using only GC peaks that were not interfered with by other GC
The following chemicals, with their stated purities, were peaks.

used:n-pentane (99+%)n-hexane (99+%)n-octane (99+%) The 1,4-hydroxycarbonyl concentrations were monitored in
and 3-pentanone (99+%), Aldrich Chemical Company; 5the dark after introduction into the chamber (5-hydroxy-2-
hydroxy-2-pentanone (96%), TCI Americaheptane (99+%), pentanone) or after in situ generation, and in several experi-
Mallinckrodt; and NO £99.0%), Matheson Gas Products. ments Q was added to the chamber aftel20—-240 min and
Methyl nitrite was prepared as described by Taylor gi&lland  the hydroxycarbonyls monitored for an additional 12—-163 min
stored at 77 K under vacuum. Ozone was generated as need@®-163 min in all but two cases). 1,4-Hydroxycarbonyls are not

using a Welsbach T-408 ozone generator. expected to react with £with room temperature rate constants
for reaction with @ of <1029 cm?® moelcule 1 s~ being antic-
3. Results ipated by analogy with other saturated carbofiy& and alco-

hols[17]. Hence at the @concentrations measured in the cham-

Using gas chromatography—mass spectrometry for isomeper after addition of @(<1.2x 10*3molecule cn7®), no losses
specific identifications, the 1,4-hydroxycarbonyl productsof the 1,4-hydroxycarbonyls would occur due to reaction with
formed from the OH radical-initiated reactions efpentane  Osz. However, any dihydrofurans present would react rapidly.
throughn-octane have previously been reported from this labFor example, the lifetime of 4,5-dihydro-2-methylfuran (the
oratory[8]. Our present 1,4-hydroxycarbonyl assignments ar@nly dihydrofuran for which data are availafe2]) would be
based on this earlier woi] and here we monitored their rela- ~0.4min at an @ concentration of 1.% 103 molecule cn,
tive concentrations, as oxime derivatives, by GC-fID]. The ~ Based on previous measurements of 5-hydroxy-2-pentanone
oximes of the 1,4-hydroxycarbonyls exist&asandE-isomers,  using the present on-fiber SPME derivatization/GC-FID anal-

Table 1

Effect of water vapor concentration on the observed decays of 5-hydroxy-2-pentanone (introduced into the chamber) in the dark prior to atid@béCaddi
the chamber

10716 x [H,0] (molecule cn3)2 Observed decays prior togCaddition and Observed decays afterzCaddition and
duration (miny duration (min¥:¢
N> diluenf 35% loss over initial 189 min, then constant No addition
over remaining 121 min
2 <20% decay (125 min) 32% decay over 163 min
~3 <20% decay (340 min) No addition
~7 <20% decay (180 min) No addition
12 <20% decay (120 min) <20% decay (149 min)
21 <20% decay (232 min) No addition
35 <20% decay (215 min) No addition

a Based on replicate measurements, the uncertainty in the water vapor concentration is estithdted 8% molecule cni3.

b Ameasured loss of 20% gas-phase 5-hydroxy-2-pentanone was used as the criterion for a “decay” of 5-hydroxy-2-pentanone, based on the analytical uncertain
using the SPME on-fiber derivatization/GC—FID analysis method (this workhd

¢ After addition of (6—12)x 10" molecule cn® of Oz to the chamber; duration is time monitored aftera@dition.

d Diluent gas was >80% cylinderNand the water vapor concentration was likely significantly lower than tkd @6 molecule cn® measured using the wet
bulb/dry bulb thermometer.

Table 2

Effect of water vapor concentration on the observed decays of 4-hydroxypentanal and 5-hydroxy-2-pentanone (formed in situ) in the dark pfier &mlditiba
of O3 to the chamber

10716 x [H,0] (molecule cnr3)2 Observed decays prior to@ddition and Observed decays afters@ddition and dura-
duration (miny tion (min)>:¢
3 <20% decays (185 min) No addition
5 <20% decays (111 min) 36% decay of 5-hydroxy-2-pentanone over
156 min; <20% decay of 4-hydroxypentanal
17 <20% decays (247 min) No addition
20 <20% decays (120 min) No addition
28 <20% decays (247 min) No addition

a Measurement uncertainty in the water vapor concentration is estimate#lad 0% molecule cr3.
b A measured loss of 20% gas-phase hydroxycarbonyl was used as the criterion for a “decay”.
¢ After addition of (6—12)x 102 molecule cnT3 of O3 to the chamber; duration is time monitored afteya@dition.
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Table 3
Effect of water vapor concentration on the observed decays of 4-hydroxyhexanal (4HHAL), 5-hydroxy-2-hexanone (5H2HO) and 6-hydroxy-3-6egaiO)e (
formed in situ, in the dark prior to and after addition of © the chamber

10716 x [H,0] (molecule cnr3)2 Observed decays prior tog@ddition and Observed decays aftep@ddition and duration

duration (min¥ (min)-¢
3 <20% decays (285 min) No addition
3 Decays of 5SH2HO (29%) and 6H3HO (27%) Decays of 4HHAL (25%), 5H2HO (additional

over 232 min; <20% decay of 4AHHAL 23%) and 6H3HO (additional 11%) over

105 min

9 <20% decays (175 min) Decays of 5H2HO (48%) and 6H3HO (22%)
over 162 min; <20% decay of 4HHAL
10 <20% decays (195 min) No addition
16 (seeFig. 2) <20% decays (173 min) <20% decays (98 min)

a Measurement uncertainty in the water vapor concentration is estimateglad 0 molecule cr3.
b A measured loss of 20% gas-phase hydroxycarbonyl was used as the criterion for a “decay”.
¢ After addition of (6—12)x 102 molecule cnt3 of O3 to the chamber; duration is time monitored afteya@dition.

ysis method, the measurement uncertainty at the two standaottanone and 7-hydroxy-4-octanone at a water vapor concen-
deviation level is~+20% [9], and this is consistent with the tration of 3x 10'® molecule cnr3.
reproducibility of the data obtained by Reisen ef&lland Baker The observations of Cavalli et 4l.1] and Martin et al[12],
et al.[10] for the 1,4-hydroxycarbonyls studied here. Hence weusing in situ Fourier transform infrared (FT-IR) spectroscopy,
use a criteria that a 1,4-hydroxycarbonyl decay occurred if thef formation of 4,5-dihydro-2-methylfuran from 5-hydroxy-2-
measured 1,4-hydroxycarbonyl concentration decreased fropentanone in the dark inJNand dry air shows that the dihydro-
its initial measurement by 20%. furans (and not just the cyclic hemi-acetals) are formed as the
Our observations are summarizediables 1-%3and selected  1,4-hydroxycarbonyls decay. Formation of the dihydrofurans is
examples are shown iRigs. 1 and 2 The three patterns of also supported by our observations with added &ddition
behavior observed are illustrated Bygs. 1 and 2and are of O3 (such that the remaining NO was reacted away agd O
summarized irFig. 3. At low water vapor concentrations, the was present in the chamber) led to additional decays of the 1,4-
1,4-hydroxyketones decayed in the dark in the absence of addégdroxycarbonyls (and to a decrease in the measugedo®-
O3, with the concentration generally leveling off and indi- centration), with an equilibrium again being attained between
cating that an equilibrium between the 1,4-hydroxycarbonythe 1,4-hydroxycarbonyl and the dihydrofuran at a lower 1,4-
and the dihydrofuran had been attained. This behavior i®ydroxycarbonyl concentratiofrig. 1). The data irFig. 1after
illustrated inFig. 1 for 5-hydroxy-2-octanone, 6-hydroxy-3- addition of G show that the lifetimes of 5-hydroxy-2-octanone

Table 4
Effect of water vapor concentration on the observed decays of 4-hydroxyheptanal (4HHAL), 5-hydroxy-2-heptanone (5H2HO), 6-hydroxy-3-(&iggitohe
and 1-hydroxy-4-heptanone (1H4HO), formed in situ, in the dark prior to and after additiontofte chamber

10716 x [H,0] (molecule cn3)2

Observed decays prior tog@ddition and dura-
tion (min)®

Observed decays aftes@ddition and duration
(min):¢

3 Decays of 5H2HO (33%), 6H3HO (29%) and Decays of 4HHAL (25%), 5H2HO (additional
1H4HO (38%) over 141 min; <20% decay of 44%), 6H3HO (additional 21%) and 1H4HO
4HHAL (additional 38%) over 114 min

4 Decays of 5SH2HO (27%) and 1H4HO (29%) Decays of 5H2HO (additional 47%), 6H3HO
over 180 min; <20% decays of 4HHAL or (42%) and 1H4HO (additional 37%) over
6H3HO 105 min; <20% decay of 4HHAL

9 (seeFig. 2) <20% decays (178 min) Decays of 5H2HO (46%), 6H3HO (33%) and
1H4HO (37%) over 99 min; 20% decay of
4HHAL

16 <20% decays (118 min) Decays of 5H2HO (51%), 6H3HO (46%) and
1H4HO (52%) over 153 min; <20% decay of
4HHAL

21 <20% decays (120 min) Decay of 5H2HO (28%) over 123 min; <20%
decays of 4HHAL, 6H3HO and 1H4HO

32 <20% decays (125 min) Decay of 5H2HO (31%) over 98 min; <20%
decays of 4HHAL, 6H3HO and 1H4HO

32 <20% decays (115 min) <20% decays (148 min)

34 <20% decays (175 min) No addition

a Measurement uncertainty in the water vapor concentration is estimateglad 0% molecule cn3.
b A measured loss of 20% gas-phase hydroxycarbonyl was used as the criterion for a “decay”.
¢ After addition of (6—12)x 102 molecule cnt3 of O3 to the chamber; duration is time monitored afteya@dition.
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Effect of water vapor concentration on the observed decays of 4-hydroxyoctanal (4HOAL), 5-hydroxy-2-octanone (5H200), 6-hydroxy-3-oct20@)ea(GH
7-hydroxy-4-octanone (7H400), formed in situ, in the dark prior to and after addition tf e chamber

10716 x [H,0] Observed decays prior tos@ddition and duration (mif) Observed decays after@ddition and duration (mif)®
(molecule cnr3)2
3 Decays of 5H200 (70%), 6H300 (20%) and 7H400 No addition
(79%) over 154 min; <20% decay of 4HOAL
3 Decay of 7H400 (33%) over 218 min; <20% decays of No addition
4HOAL. 5H200 and 6H300
3 (seeFig. 1) Decays of 5H200 (48%) and 7H400 (73%) over 180 min;  Decays of 5H200 (additional 32%), 6H300 (26%) and 7H400
<20% decays of 4HOAL and 6H300 (additional 14%) over 70 min; <20% decay of 4HOAL
8 Decays of 5H200 (37%) and 7H400 (68%) over 147 min;  Decays of 4HOAL (41%), 5H200 (additional 37%), 6H300O
<20% decays of 4HOAL and 6H300 (20%) and 7H400 (additional 18%) over 120 min
11 Decay of 7H400 (21%) over 247 min; <20% decays of No addition
4HOAL, 5H200 and 6H300
16 Decays of 4HOAL (20%) and 7H400 (28%) over 260 min;  No addition
<20% decays of 5H200 and 6H300
16 Decay of 7H400 (23%) over 142 min; <20% decays of Decay of 7H400 (additional 10%) over 12 min; <20% decays of
4HOAL, 5H200 and 6H300 4HOAL, 5H200 and 6H300
21 Decay of 7H400 (22%) over 148 min; <20% decays of Decays of 4HOAL (29%), 5H200 (57%) and 7H400 (additional
4HOAL, 5H200 and 6H300 53%) over 145 min; <20% decay of 6H300
23 <20% decays over 241 min No addition
24 Decay of 7H400 (24%) over 123 min; <20% decays of Decays of 4HOAL (44%), 5H200 (62%), 6H300 (24%) and
4HOAL, 5H200 and 6H300 7H400 (additional 59%) over 156 min
28 Decay of 7H400 (23%) over 122 min; <20% decays of Decays of 5H200 (42%) and 7H400 (additional 33%) over
4HOAL, 5H200 and 6H300 140 min; <20% decays of 4HOAL and 6H300
33 <20% decays (202 min) No addition
34 <20% decays (160 min) <20% decays (13 min)

a Measurement uncertainty in the water vapor concentration is estimate?ad 0% molecule cn3.
b A measured loss of 20% gas-phase hydroxycarbonyl was used as the criterion for a “decay”.
¢ After addition of (6—12)x 10*2 molecule cnt3 of Os to the chamber; duration is time monitored aftera@dition.

and 7-hydroxy-4-octanone with respect to conversion to the
dihydrofurans are~10 min, assuming that the dihydrofurans
o were removed rapidly by reaction withs@nd that the rate-
4-Hydroxyoctanal determining step was conversion of the 1,4-hydroxycarbonyl to
its corresponding dihydrofuran.
\ The second pattern of behavior is illustrated by the 1,4-
\ hydroxycarbonyls formed from the OH radical reaction with
A _a n-heptane and shown iRig. 2 As shown inFig. 3, at inter-
mediate water vapor concentrations no significant decays of
1,4-hydroxcarbonyls were observed in the absence of added
Oz, but addition of @ resulted in measurable decays. This
\ behavior can be explained by the equilibrium between the 1,4-

—_
o

c
©
]

6-Hydroxy-3-octanone

5-Hydroxy-2-octanone

[1,4-Hydroxycarbonyl],/[1,4-Hydroxycarbonyl],,

0.4 \ hydroxycarbonyl and dihydrofuran being largely towards the
\-\ 1,4-hydroxycarbonyl, with addition of§¥eacting with the small
N equilibrium concentration of dihydrofuran at a rate sufficient to
7-Hydroxy-4-octanone \"k—‘v [‘%Sylt in decay of the 1,4-hydroxycarbonyl to maintain the equi-
ibrium.

o
o

Finally, the third behavior observed was no decay in the
absence or presence ogOndicating that under these condi-
tions the 1,4-hydroxycarbonyb dihydrofuran equilibrium so
Fig. 1. Plots of [1,4-hydroxycarbonyl[1,4-hydroxycarbonyl}, against time ~ favored the 1,4-hydroxycarbonyl that insufficient dihydrofuran
for 4-hydroxyoctanal, 5-hydroxy-2-octanone, 6-hydroxy-3-octanone and 7was present to result in any significant loss of (dihydrofu-
hydroxy-4-octano!1e formed in situ by reaction of OH radicals V\nth ran+1,4-hydroxycarb0nyl). This behavior is showrh‘-ig. 2by
octane and monitored in the_ dark (open symbols) and after addltl(_)n o{h 1.4-hvd b Is f df theh ti t
~6 x 1012 molecule cm3 of Oz (filled symbols). The water vapor concentration e Ll.a-hy roxycar_ onyls tormeg from €xane reaction a
was 3x 10 molecule crt3. The solid lines (prior to @addition) and dashed ~ & Water concentration of 16 10*"molecule cnr®, as well as

lines (after Q addition) are for illustrative purposes. by 4-hydroxyheptanalHig. 2) and 4-hydroxyoctanaHg. 1).

T T T T T T
50 100 150 200 250 300 350

Time (min})

o
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H fi mmm Decays observed in the absence of O,
n-riexane reaction Decays observed in the presence of O,
A
1540 8 A P |y
. - Toycrony--octenone |

= ) |
E 6-Hydroxy-3-octanone W
ﬁ 5-Hydroxy-2-octanone W 2
=
8 o o 4-Hydroxyoctanal Z
o

1.04
%" g iy A Yw:"*:_ 1-Hydroxy-4-heptanone I%/ Z

NS =
— > iy N 3] f 7
by v v \\\\\ ° 6-Hydroxy-3-heptanone «
> s 5-Hydroxy-2-heptanone % Z
é n-Heptane reaction \\\‘Q
g \\1 4-Hydroxyheptanal -—
Q |
g 05 6-Hydroxy-3-hexanone W
© L
= 5-Hydroxy-2-hexanone W
= 4-Hydroxyhexanal 22
5-Hydroxy-2-pentanone F2222]
0.0 T \ T T T \ 4-H I
0 50 100 150 200 250 300 350 ydroxypentana
Time (min) T \ T

0 5 10 15 20 25 30 35
Fig. 2. Plots of [1,4-hydroxycarbonyl]1,4-hydroxycarbonyl}, against time 107® x [H,0), molecule cm™®
for: (@)—4-hydroxyhexanal and 4-hydroxyheptanall){5-hydroxy-2-
hexanone and 5-hydroxy-2-heptanona)+-6-hydroxy-3-hexanone and 6- Fig. 3. Water vapor concentrations at which individual 1,4-hydroxycarbonyls
hydroxy-3-heptanone ¥)—1-hydroxy-4-heptanone formed in situ by reaction exhibited decays in the dark in the absence of addedbfack bars) and
of OH radicals withz-hexane and-heptane and monitored in the dark (open decays in the presence of addegd (triped bars). (*) No decay observed in
symbols) and after addition of1.2x 10*3molecule cnt® of O3 (filled sym-  the absence of § even at the minimum water vapor concentration used of
bols). The water vapor concentrations were 1 B0'” molecule cnt® for the 3 x 10 molecule cn? [for 5-hydroxy-2-pentanone decay was observed in dry
n-hexane reaction and®10*® molecule cm® for the n-heptane reaction. The N, (seeTable J]; (**) no decay observed in the presence of, ®ven at the min-
data for 4-hydroxyhexanal and the hydroxyhexanones have been displaced véfium water vapor used of 3 101 molecule cnm3.
tically by 0.5 units for clarity. The solid lines (prior tog&ddition) and dashed
lines (after Q addition) are for illustrative purposes.
centration is accompanied by a stoichiometric formation of
The effects of water vapor concentration on the stability of thehe corresponding dihydrofuran. In many cases, equilibrium
1,4-hydroxycarbonyls are summarizedHig. 3. The formation was not attained prior to the end of the experiment or the
yields of the 4-hydroxyaldehydes from the OH radical-initiatedaddition of &, and hence only lower limits t& could
reactions ofi-pentane throughroctane reactionsareld®] and  then be derived. The equilibrium constarifsat 296+ 4 K
the GC peaks of their oximes were small making our data foobtained from the data summarized iFables 3-5are:
the 4-hydroxyaldehydes somewhat less certain than those for tiier 5-hydroxy-2-hexanonex1 x 108 molecule cn® (from 1
1,4-hydroxyketones. However, as seerfig. 3 no decays for experimentat [HO] = 3 x 10'® molecule cnt3); for 6-hydroxy-
4-hydroxypentanal, 4-hydroxyhexanal, 4-hydroxyheptanal an@-hexanonez1 x 10 molecule cn® (from 1 experiment at
4-hydroxyoctanal were observed in the absence pfiDany  [H,0] =3 x 10 molecule cnv®); for 1-hydroxy-4-heptanone,
water vapor concentration used (the single apparent exceptior,1.5x 10 moleculecnt® (from 2 experiments at [pD]
the measured 20% decrease in the 4-hydroxyoctanal concen{3—4)x 10*molecule cn3); for 5-hydroxy-2-heptanone,
tration over a 260 min period at 1:610'" moleculecn® of  >1.5x 10 molecule cn® (from 2 experiments at [fD]=
water vapor in the absence ogQTable § was not confirmed  (3-4)x 10 molecule cmi®); for  6-hydroxy-3-heptanone,
by a replicate experiment at the same water vapor concere1 x 108 molecule cmi® (from 1 experiment at [H0] =3 x
tration, nor by experiments at lower water vapor concentra10® molecule cn®); for 5-hydroxy-2-octanone~5 x 106
tions). The stability of the hydroxyaldehydes may be due to thenolecule cnt® (from three experiments at p®]=(3-8)x
dihydrofuran formed being a 5-alkyl-4,5-dihydrofuram@®H  10%molecule cnt3); for 6-hydroxy-3-octanone~7 x 10'°
in Scheme 1 whereas the 1,4-hydroxyketones all form 4,5-molecule cm® (from two experiments at [pD]=3x 106
dihydro-2-alkylfurans (R=alkyl in Scheme 1 molecule cnt3); and for 7-hydroxy-4-octanone;8 x 106
Defining an equilibrium constark for the 1,4-hydroxy- molecule cnm3, with an uncertainty of a factor of2 (from
carbonyk> dihydrofuran + HO interconversion $cheme 1 10 experiments at [pD]=(3-28)x 10® molecule cni3).
as K = ([dihydrofuran][HO]/[1,4-hydroxycarbonyl]), then the For the other 1,4-hydroxycarbonyls monitored here,
data obtained in the absence of addedc@n be used to derive K <7 x 10 molecule cni at 296+ 4 K.
values ofK for certain of the 1,4-hydroxycarbonyls, assuming The other effect of structure on the stability of the 1,4-
that the measured decrease in the 1,4-hydroxycarbonyl cofrydroxyketones as a function of water vapor that is evident
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from Fig. 3is a trend for the decays of the 1,4-hydroxyketoneswith linear alkenes undergo cyclization and dehydration to form
(i.e., interconversion to the dihdyrofuran species) to occur untihitrato-substituted dihydrofurans which react further to form
progressively higher water vapor concentrations as the carbanulti-functional, aerosol-phase, compounds.
number of the 1,4-hydroxyketone increases, although there are
also obvious differences between 1,4-hydroxyketones of thAcknowledgements
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